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INTRODUCTION

The prediction of pharmacokinetic parameters in man
from data obtained in laboratory animals (interspecies scal-
ing) is most commonly achieved through the allometric ap-
proach. Allometry attempts to establish a quantitative rela-
tionship between the pharmacokinetic parameters of interest
and a physiological characteristic of the animal such as body
weight, brain weight, liver weight, or body surface area (1-
6). Although empirical, allometric scaling relies on the ob-
servation that many mammalian physiological processes are
highly correlated with body weight. Therefore, it is reason-
able to infer that drug distribution and elimination may also
be related to animal size. The basic equation used in allo-
metric species scaling is given by

PP =o-X° n

where PP is the pharmacokinetic parameter to be scaled, X
is the animal physiologic parameter, « is the allometric co-
efficient, and B is the allometric exponent.

The allometric equation, which assumes that the phar-
macokinetic parameters in mammals can be mapped to a
single physiologic parameter by a log-linear transformation,
is an example of a one-dimensional transformation. In sev-
eral instances, especially for drugs metabolized by the mixed
function oxidase system or low-extraction ratio drugs, the
human parameters do not usually coincide with the animal
data following this one-dimensional transformation. How-
ever, if the pharmacokinetic parameter (typically clearance)
is corrected for the maximum life span potential (MLP), the
human data are brought into line with the other species (3).
The MLP, however, is a function of both body weight and
brain weight; therefore, the simple one-dimensional trans-
formation is no longer an adequate mapping function. Nev-
ertheless, several retrospective studies have demonstrated
the utility of the allometric approach (7-15).

In the allometric scaling approach, the calculations are
performed essentially in isolation, i.e., only the animal data
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Technical Note

for a particular drug are used in the calculation, without
using the available information from other drugs and/or
structural information of the molecule. There may, however,
exist some relevant information in other data sets that, if
utilized, may improve our ability to predict human data.
Data evaluation with a suitable nonlinear pattern recognition
system may also offer some advantages. Artificial neural
networks (ANNSs) have been reported to be useful pattern
recognition tools for a wide variety of problems in chemistry
and pharmacy (16 (review),17,18). Some of these studies
have compared ANN with common statistical techniques
such as multiple linear or polynomial regression analysis,
nearest-neighbor classifier, maximum-likelihood estimation,
and Bayesian estimation. The performance of ANNs was
reported to be comparable or superior to that of these tech-
niques. The advantage of ANNSs over statistical estimation
techniques is that no a priori knowledge of the underlying
statistical nature of the problem is required and no simplify-
ing assumptions need to be made for application of this tech-
nique in a sparse data environment (17). In this communica-
tion, we have examined the feasibility of developing an ANN
tool for the prediction of the apparent volume of distribution
(V,) and the total clearance (Cl,,) in humans from a set of
animal data alone and from a combination of animal data and
structural descriptors based on chemical graph theory.

METHODS

Pharmacokinetic Data and Allometric Calculations

The PPs (Cl,,, and V,) of 14 drugs were all taken from
the literature (7-15,19-26). Only commonly used laboratory
animals (total of four different species) such as the mouse,
rat, rabbit, monkey, and dog were used. For most of these
drugs, the allometric approach has been shown to be suc-
cessful. For two drugs (DDC and AZT), the human PPs were
obtained in patients, not in healthy volunteers. Also, for
these drugs, the steady-state volume of distribution (V) was
used. Inclusion of these drugs assumes that interspecies
variability is much greater than intraspecies variability. The
allometric parameters [a and B from Eq. (1)] for the PPs,
using the body weights as the physiologic variable, were
estimated by linear regression analysis after log-log transfor-
mation. The resultant allometric equation [Eq. (1)] was then
used to predict the results in man. In addition, for Cl,,, the
MLP correction (Cl,,, * MLP) was also used.

Chemical Graph Theory-Based Molecular Descriptors

The valence chi (x) and the kappa shape indexes (k)
proposed by Hall and Kier (27) were calculated by the Mol-
conn-x program (Hall Associates Consulting, Quincy, MA).

ANN Analysis

The ANN analysis was performed with the Neural-
Works Professional II/Plus software (NeuralWare, Inc.,
Pittsburgh, PA) on an IBM-compatible 486DX/33mHz com-
puter. A three-layer (input, hidden, and output) nonlinear
feedforward network with the hyperbolic tangent transfer
function based on the Extended-Delta-Bar-Delta (EDBD) al-
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gorithm (28) was used. This algorithm is a modified version
of the standard backpropagation algorithm and reduces the
training time by using individual (for each node) time varying
momentum and learning rate coefficients that are adjusted
heuristically during training.

Input/Output Data Format

The following input/output formats were investigated
for ANN analysis based on the animal data.
1. BW,,BR,,MLP,,PP,,........ ,BW,,BR,,MLP,,BW,_,
BR,,,MLP_/PP_
2. (PP/BW),,........ L(PP/BW),/(PP/BW),_,
3. (Cltot + MLP/BW),,.., (Cltot * MLP/BW),/(Cltot *
MLP/BW),,
4. (Cltot/BW),, (Cltot + MLP/BW),,.., (Cltot/BW),,
(Cltot + MLP/BW),/(Cltot * MLP/BW),,
where BW is body weight, BR is brain weight, and the sub-
script numbers refer to the individual species, and m refers
to man. In addition, the logarithmic transformation of the
above parameters were also evaluated. The arrangement of
the data set was in the increasing order of the body weight
(see Table I).
Min-Max Values. The input/output data were scaled to
the —0.5to +0.5 range for V, and to the — 1 to + 1 range for
Cl,,, by the following equation:

2

X2 — X1
scaled value = y; + (x — x) -
Y2 — Y1

where x is the value to be scaled, x, is the unscaled low value
(0), x, is the unscaled high value, v, is the scaled low value
(—1or —0.5), and v, is the scaled high value (1.0 or 0.5).
ANN Training. The number of hidden layer nodes was
selected by training the network with 1, 2, 3, and 4 hidden
nodes and selecting the lowest number that resulted in a
smooth and stable reduction in the root mean square error
(RMS) as a function of training sequence. The network was
trained for 1000 epochs (number of training examples). The
connection weights were initially randomized to values in
the —0.1 and +0.1 range. The ANN’s performance was
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evaluated by the ‘‘one-out’ method, i.e., one data set (one
drug) was excluded during training, after which the trained
ANN was evaluated for its ability to predict the PPs of the
excluded drug. This was repeated until all drugs were ex-
cluded once from the training set. The ANN-predicted Cl,,
and V, were then compared with the predictions obtained
from the standard allometric techniques.

For the ANN containing both animal data and structural
descriptors, input/output format 2 was used for V, and for-
mat 3 was used for Cl,.,. The valence path indices of order 1
through 3 (*x,, 2x,, >x,), the third-order cluster (x), the
fourth-order path/cluster (4Xp/c1), and shape indices of order
1 through 3 (‘«,, ’k,, ’k,) were used. Of these, the most
relevant structural descriptors were selected by training the
network on the entire set of inputs (all structural descriptors
and animal data). After training, each input node was se-
quentially and individually disabled (set to zero) to test its
contribution (increase in RMS). Those input nodes that did
not give a significant increase in the RMS were eliminated.
The resultant network was used for the PP prediction as
described above.

RESULTS AND DISCUSSION

Several types of neural networks, each differing in their
training algorithm and architecture, have been proposed.
The delta backpropagation network (16) is the most widely
used, and its training algorithm is, in some aspects, similar to
(multiple) nonlinear regression analysis. In this investiga-
tion, we used the EDBD training algorithm (28) because, in
previous studies, we have found it to be more efficient
(shorter training time) compared to the simple delta back-
propagation algorithm (29).

Several different input/output (animal) data formats
were investigated. Our initial efforts were focused on format
1, in which individual body weights, brain weights, MLPs,
and PPs were used. Both training and generalization were
successful; however, use of this format was discontinued
because data for all drugs in the same species were not avail-
able. Use of parameters of different species for the same

Table I. Results for Volume of Distribution (V,)*

Drug Species Observed Allometry ANN I ANN IT

DDC (10) A,B,D.E 0.54 1.61 0.53 1.03
SM-1652 (19) AB,.C,F 0.12 0.16 0.65 0.23
Phencyclidine (11) A,B,EF 6.19 12.9 6.14 6.49
FCE-22101 (12) B,C.E,F 0.44 0.51 0.57 0.72
Cefotetan (20,21) A,B,C,F 0.18 0.20 0.55 0.25
Erythromycin (9) A,B,C,F 1.04 4.11 2.14 0.88
Methotrexate (7) A,B,EF 0.65 0.66 0.59 0.65
Cyclophosphamide (22) A,B.E.F 1.14 0.93 0.63 1.02
Ceftizoxime (23,24) A,B.E,F 0.39 0.10 0.49 0.14
Caffeine (8) A,B,C.E 0.73 0.92 0.64 0.85
Propafenone (13) A,B,C.,F 1.72 3.48 1.27 1.65
AZT (14) A,B.E,F 1.40 1.24 0.68 0.72
CAS-94457-09-7 (25,26) A,B,.C,F 0.72 0.42 0.93 0.84
Coumarin (15) B.C.E,F 2.21 11.6 4.43 1.94

RMS 0.87 0.20 0.08

% A = mouse; B = rat; C = rabbit; D = cat; E = monkey; F = dog. V, expressed as L/kg. ANN I corresponds to the predicted V, without
topological indices. ANN II corresponds to the predicted V, with topological indices. RMS is the root mean square error.
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input node may yield a pattern (in the data set) quite different
from the one we hope to extract. For example, data points
that have different species at a particular input node (i.e., rat
instead of mouse) may be grouped differently by the net-
work. Normalizing the PP to the physiologic parameters
(BW and/or MLP) reduces the number of inputs and reduces
the chance of undesirable patterns in the data set. Ideally,
data from the same animal species should be used.

For the prediction of V,, input/output format 2 using
both numeric and log-transformed data was evaluated. The
numeric format (test set RMS = 0.2) appeared to be superior
to the log-format (RMS = 0.48); however, a min-max range
of greater than —0.5 to 0.5 (—1.0 to 1.0 is the typical range
for tanh transfer function) resulted in network paralysis dur-
ing a few (one-out) training sets. In this communication, only
the numeric format results are listed. Two hidden layer
nodes were sufficient to achieve a a RMS of 0.09 and 0.04 for
ANN I and ANN II, respectively. Results of the allometric
and the ANN (I) predictions (one-out test method) are
shown in Table 1. The overall prediction error for the ANN
approach was lower (RMS = (.2) than that of the allometric
approach (RMS 0.87). However, ANN I was not sensitive
for low V, values (less than 0.5). Additional hidden nodes
(up to 4) did not improve the prediction of low V,’s. Use of
the smallest possible volume of distribution for a hypothet-
ical drug (plasma volume) as an additional input value in the
training set did improve the predictions slightly (data not
shown).

Additional input parameters such as extent of protein
binding, partition coefficient, and ionization constant would
certainly be relevant for this problem; however, these data
were not available for all the drugs used in this study. Chem-
ical graph theory has been developed to characterize the
topology of a molecule in terms of numerical indices. These
indices have been shown to be related to several physico-
chemical properties (solubility, partition coefficient, etc.)
and the pharmacologic/toxicologic activity of several com-
pounds (27). Application of chemical graph theory for quan-
titative structure-pharmacokinetic relationships of a series
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of benzodiazepines has also been reported (30). Therefore,
we attempted to supplement the animal data with topological
indices using the x, and k, indices to develop an enhanced
network (ANN II). From the relevant feature extraction pro-
cedure, the "Xy, *Xpier» 'Ko» *Kq» and k., were found to com-
plement the animal data as noted by the reduced RMS (0.08).
These results suggest that knowledge of only V, in animals
may not be sufficient to predict the value in humans for all
drugs. Since V, is a function of the extent of binding to blood
constituents and, in many cases, the extent of binding differs
among the various species, the improved RMS may be a
result of a relationship between the structural descriptors
and the binding characteristics. However, this hypothesis
remains to be verified.

Results for the Cl,,, are summarized in Table II. The
predicted values listed under Allometry MLP Corr. were
obtained by indiscriminate use of this correction factor. Ap-
plication of the MLP correction for SM-1652, phencyclidine,
erythromycin, cyclophosphamide, and propafenone im-
proved the prediction over that of simple allometry. For caf-
feine and CAS-94457-09-7, both of which are low-extraction
ratio drugs, simple allometry was found to be more accurate.
Three networks with different input/output formats, namely,
format 3 (ANN I), format 4 (ANN II), and a combination of
topological indices and input/output format 3, were devel-
oped. Three hidden nodes were necessary for these net-
works to achieve a RMS of 0.02 or less. The overall predic-
tive abilities of ANN I and II were equivalent to or slightly
better than those of the allometric method (with indiscrimi-
nate use of MLP correction). Application of the MLP cor-
rection to only drugs that may be classified as ‘‘low extrac-
tion ratio’’ did not improve the predictive ability of the al-
lometric procedure (RMS = 0.12). The low prediction error
of ANN II suggests that a pattern regarding the application
of MLP correction may be derived, to a large extent, from
the animal data.

Categorization of drugs according to their elimination
pathways (renal, hepatic, etc.,) may improve the predictive
ability of the network, however, these data are most often

Table II. Results for Total Clearance (Cl,,)”

Allometry
Drug Observed Allometry MLP corr. ANN 1 ANN II ANN II1
DDC 0.38 0.49 0.23 0.64 0.37 0.35
SM-1652 0.02 0.04 0.02 0.02 0.02 0.06
Phencyclidine 0.29 1.64 0.74 0.74 0.22 0.10
FCE-22101 0.48 0.24 0.11 0.17 0.24 0.18
Cefotetan 0.04 0.04 0.03 0.14 0.10 0.11
Erythromycin 0.42 1.23 0.34 0.73 1.13 0.54
Methotrexate 0.19 0.17 0.08 0.09 0.13 0.16
Cyclophosphamide 0.20 0.74 0.34 0.68 0.48 0.31
Ceftizoxime 0.21 0.10 0.05 0.82 0.21 0.28
Caffeine 0.12 0.11 0.04 0.23 0.12 0.34
Propafenone 1.09 1.79 0.36 0.55 0.59 1.12
AZT 1.60 1.09 0.49 0.60 0.72 1.15
CAS-94457-09-7 0.28 0.23 0.07 0.21 0.25 0.29
Coumarin 1.40 1.93 0.98 1.17 1.59 1.60
RMS 0.14 0.11 0.11 0.09 0.05

4 Cl,,, expressed as L/hr/kg. ANN I corresponds to input/output format 3. ANN II corresponds to input/output format 4. ANN III
corresponds to input/output format 3 with inclusion of topological indices. RMS is the root mean square error.
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unavailable for all species. Physicochemical properties of
drugs play a very important role in both distribution and
elimination. Therefore, the use of structural descriptors was
also investigated. Since the predictive abilities of ANN I and
II were not dramatically different, input/output format 3 was
used along with the structural descriptors to keep the num-
ber of input parameters to a minimum. The combination of
"Xv» 2K, and the animal data format 3 resulted in an overall
prediction error of 0.05.

CONCLUSION

This study demonstrates the feasibility of ANNs for
multidimensional interspecies scaling of PPs. The various
ANNSs developed were able to provide adequate generaliza-
tion even though they were presented with only a limited
number of examples. This study also demonstrated the im-
portance of the chemical structure as a supplement to the
animal data. However, several limitations of this technique
were apparent, the major limitation being the availability of
animal data in at least four different species (reduction of the
number of species to three or fewer resulted in poor predic-
tions for this data set). Other limitations deal with the de-
velopment of the ANN itself. For example, there are no set
rules and guidelines for selecting the number of hidden
nodes, number of training iterations, and preprocessing of
data. For this approach to have practical value, the number
of animal species will have to be reduced to at least two most
commonly used species (for example, rat and dog) and the
number of drugs will have to be increased significantly. Fu-
ture communications will deal with this aspect.

REFERENCES

1. H. Boxenbaum. Interspecies pharmacokinetic scaling and the
evolutionary-comparative paradigm. Drug. Metab. Rev. 15:
1071-1121 (1984).

2. H. Boxenbaum. Interspecies scaling, allometry, physiologic
time, and the ground plan for pharmacokinetics. J. Pharma-
cokin. Biopharm. 10:201-227 (1982).

3. R. M. J. Ings. Interspecies scaling and comparison in drug de-
velopment and toxicokinetics. Xenobiotica 20:1201-1231 (1990).

4. J. Mordenti. Man versus beast: Pharmacokinetic scaling in
mammals. J. Pharm. Sci. 75:1028-1039 (1986).

5. H. Boxenbaum. Time concepts in physics, biology, and phar-
macokinetics. J. Pharm. Sci. 75:1053-1062 (1986).

6. F. E. Yates and P. N. Kugler. Similarity principles and intrinsic
geometries: Contrasting approaches to interspecies scaling. J.
Pharm. Sci. 75:1019-1027 (1986).

7. R. L. Dedrick, K. B. Bischoff, and D. Z. Zaharko. Interspecies
correlation of plasma concentration history of methotrexate
(NSC-740). Cancer Chemother. Rep. Part I 54:95-101 (1970).

8. M. Bonati, R. Latini, G. Tognoni, J. F. Young, and S. Garattini.
Interspecies comparison of in vivo caffeine pharmacokinetics in
man, monkey, rabbit, rat, and mouse. Drug Metab. Rev.
15:1355-1383 (1985).

9. G. S. Duthu. Interspecies correlation of the pharmacokinetics

of erythromycin, oleandomycin, and tylosin. J. Pharm. Sci.

74:943-946 (1985).

S. S. Ibrahim and F. D. Boudinot. Pharmacokinetics of 2’,3'-

dideoxycytidine in rats: Application to interspecies scale-up. J.

Pharm. Pharmacol. 41:829-834 (1989).

S. M. Owens, W. C. Hardwick, and D. Blackall. Phencyclidine

pharmacokinetic scaling among species. J. Pharmacol. Exp.

Ther. 242:96-101 (1987).

10.

11.

12

13.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

469

. C. Efthymimopoulos, R. Battaglia, and M. Benedetti. Animal
pharmacokinetics and interspecies scaling of FCE 22101 a
penem antibiotic. J. Antimicrob. Chemother. 27:517-526 (1991).
A. Puigdemont, R. Guitart, F. De Mora, and M. Arboix. Pre-
diction of the disposition of propafenone in humans and dogs
from pharmacokinetic parameters in other animal species. J.
Pharm. Sci. 80:1106-1109 (1991).

. B. A. Patel, F. D. Boudinot, R. F. Schinazi, J. M. Gallo, and
C. K. Chu. Comparative pharmacokinetics and interspecies
scaling of 3'-azido-3’-deoxythymidine (AZT) in several mamma-
lian species. J. Pharmacobio-Dyn. 13:206-211 (1990).

W. A. Ritschel, N. N. Vachharajani, R. D. Johnson, and A. S.
Hussain. Interspecies scaling of coumarin among six different
mammalian species. Meth. Find. Clin. Exp. Pharmacol. 13:697-
702 (1991).

J. Gasfeiger and J. Zupan: Neural networks: A new method for
solving chemical problems or just a passing phase. Anal. Chem.
Acta 248:1-30 (1991).

S. Shadmehr and D. Z. D’Argenio. A neural network for non-
linear Bayesian estimation in drug therapy. Neur. Comp. 2:216~
225 (1990).

A. S. Hussain, X. Yu, and R. D. Johnson. Application of neural
computing in pharmaceutical product development. Pharm.
Res. 8:1248-1252 (1991).

H. Matsui, K. Yano, and T. Okuda. Pharmacokinetics of the
cephalosporin SM-1652 in mice, rats, rabbits, dogs and rhesus
monkeys. Antimicrob. Agents Chemother. 22:213-219 (1982).
M. Komoya, Y. Kikuchi, A. Tachibana, and K. Yano. Pharma-
cokinetics of a new broad-spectrum cephamycin YM09330, pa-
rentally administered to various experimental animals. Antimi-
crob. Agents Chemother. 20:176-183 (1981).

R. A. Yates, H. K. Adam, R. J. Donnelly, H. L. Houghton,
E. A. Charlesworth, and E. A. Laws. Pharmacokinetics and
tolerance of single i.v. doses of cefotetan disodium in male cau-
casian volunteers. J. Antimicrob. Chemother. 11 (Suppl A):185—
198 (1982).

L. B. Mellet. Comparative drug metabolism. Prog. Drug. Res.
13:136-169 (1969).

T. Murakama, H. Sakamoto, S. Fukada, S. Nakamoto, T. Hi-
rose, N. Itoh, and M. Nishida. Pharmacokinetics of cefotoxime
in animals after parenteral dosing. Antimicrob. Agents Cheno-
ther. 17:157-164 (1980).

H. C. Neu. The new B-lactamase stable cephalosporins. Ann.
Intern. Med. 97:408—419 (1982).

M. Komuro, W. Hori, M. Hotta, S. Saitoh, R. Ishida, and H.
Uchida. Pharmacokinetics of the new antiplatelet agent 2-meth-
yl-3-(1,4,5,6-tetrahydronicotinoyl)pyrazolo[1,5-a]pyridine in
laboratory animals. Arzneim. Forsch./Drug Res. 42:55-59
(1992).

M. Komuro, W. Hori, M. Hotta, S. Saitoh, R. Ishida, and H.
Uchida. Pharmacokinetics of the new antiplatelet agent 2-meth-
yl-3-(1,4,5,6-tetrahydronicotinoyl)pyrazolo[1,5-a]pyridine in
human subjects. Arzneim. Forsch./Drug Res. 42:60-64 (1992).
L. H. Hall and L. B. Kier. The molecular connectivity Chi in-
dexes and Kappa shape indexes in structure property modeling.
In K. B. Lipkowitz and D. B. Boyd (eds.), Reviews in Compu-
tational Chemistry I, VCH, New York, 1991, pp. 367—422.
A. A. Minai and R. D. Williams. Acceleration of back-
propagation through learning rate and momentum adaptation.
Int. Joint Conf. Neur. Networks 1:676-679 (1990).

A. S. Hussain and R. D. Johnson. Development of a neural
network for QSAR problems. Presented at the 203rd ACS Na-
tional Meeting (Division of Computers in Chemistry), San Fran-
cisco, CA, April 5-10, 1992.

R. S. Markin, W. J. Murray, and H. Boxenbaum. Quantitative
structure-activity study on human pharmacokinetic parameters

of benzodiazepines using the graph theory approach. Pharm.
Res. 5:201-208 (1988).



